Skip to content

Time Namespace

[AD REMOVED]

Basic Information

The time namespace in Linux allows for per-namespace offsets to the system monotonic and boot-time clocks. It is commonly used in Linux containers to change the date/time within a container and adjust clocks after restoring from a checkpoint or snapshot.

Lab:

Create different Namespaces

CLI

sudo unshare -T [--mount-proc] /bin/bash

By mounting a new instance of the /proc filesystem if you use the param --mount-proc, you ensure that the new mount namespace has an accurate and isolated view of the process information specific to that namespace.

Error: bash: fork: Cannot allocate memory When `unshare` is executed without the `-f` option, an error is encountered due to the way Linux handles new PID (Process ID) namespaces. The key details and the solution are outlined below: 1. **Problem Explanation**: - The Linux kernel allows a process to create new namespaces using the `unshare` system call. However, the process that initiates the creation of a new PID namespace (referred to as the "unshare" process) does not enter the new namespace; only its child processes do. - Running `%unshare -p /bin/bash%` starts `/bin/bash` in the same process as `unshare`. Consequently, `/bin/bash` and its child processes are in the original PID namespace. - The first child process of `/bin/bash` in the new namespace becomes PID 1. When this process exits, it triggers the cleanup of the namespace if there are no other processes, as PID 1 has the special role of adopting orphan processes. The Linux kernel will then disable PID allocation in that namespace. 2. **Consequence**: - The exit of PID 1 in a new namespace leads to the cleaning of the `PIDNS_HASH_ADDING` flag. This results in the `alloc_pid` function failing to allocate a new PID when creating a new process, producing the "Cannot allocate memory" error. 3. **Solution**: - The issue can be resolved by using the `-f` option with `unshare`. This option makes `unshare` fork a new process after creating the new PID namespace. - Executing `%unshare -fp /bin/bash%` ensures that the `unshare` command itself becomes PID 1 in the new namespace. `/bin/bash` and its child processes are then safely contained within this new namespace, preventing the premature exit of PID 1 and allowing normal PID allocation. By ensuring that `unshare` runs with the `-f` flag, the new PID namespace is correctly maintained, allowing `/bin/bash` and its sub-processes to operate without encountering the memory allocation error.

Docker

docker run -ti --name ubuntu1 -v /usr:/ubuntu1 ubuntu bash

Check which namespace is your process in

ls -l /proc/self/ns/time
lrwxrwxrwx 1 root root 0 Apr  4 21:16 /proc/self/ns/time -> 'time:[4026531834]'

Find all Time namespaces

sudo find /proc -maxdepth 3 -type l -name time -exec readlink {} \; 2>/dev/null | sort -u
# Find the processes with an specific namespace
sudo find /proc -maxdepth 3 -type l -name time -exec ls -l  {} \; 2>/dev/null | grep <ns-number>

Enter inside a Time namespace

nsenter -T TARGET_PID --pid /bin/bash

[AD REMOVED]